函数极限求未知参数的公式,求关于正弦函数级数的极限

seosqwseo2周前 (05-10)测评日记8

一、初三所有数学公式!急用

第一章随机**和概率

(1)排列组合公式从m个人中挑出n个人进行排列的可能数。

从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n

某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n

某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n种方法来完成,则这件事可由m×n种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)

对立**(至少有一个)

顺序问题

(4)随机试验和随机**如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机**。

(5)基本**、样本空间和**在一个试验下,不管**有多少个,总可以从其中找出这样一组**,它具有如下性质:

①每进行一次试验,必须发生且只能发生这一组中的一个**;

②任何**,都是由这一组中的部分**组成的。

这样一组**中的每一个**称为基本**,用来表示。

基本**的全体,称为试验的样本空间,用表示。

一个**就是由中的部分点(基本**)组成的**。通常用大写字母A,B,C,…表示**,它们是的子集。

为必然**,Ø为不可能**。

不可能**(Ø)的概率为零,而概率为零的**不一定是不可能**;同理,必然**(Ω)的概率为1,而概率为1的**也不一定是必然**。

(6)**的关系与运算①关系:

如果**A的组成部分也是**B的组成部分,(A发生必有**B发生):

如果同时有,,则称**A与**B等价,或称A等于B:A=B。

A、B中至少有一个发生的**:A B,或者A+B。

属于A而不属于B的部分所构成的**,称为A与B的差,记为A-B,也可表示为A-AB或者,它表示A发生而B不发生的**。

A、B同时发生:A B,或者AB。A B=Ø,则表示A与B不可能同时发生,称**A与**B互不相容或者互斥。基本**是互不相容的。

-A称为**A的逆**,或称A的对立**,记为。它表示A不发生的**。互斥未必对立。

②运算:

结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C

分配率:(AB)∪C=(A∪C)∩(B∪C)(A∪B)∩C=(AC)∪(BC)

德摩根率:,

(7)概率的公理化定义设为样本空间,为**,对每一个**都有一个实数P(A),若满足下列三个条件:

1° 0≤P(A)≤1,

2° P(Ω)=1

3°对于两两互不相容的**,,…有

常称为可列(完全)可加性。

则称P(A)为**的概率。

(8)古典概型 1°,

2°。

设任一**,它是由组成的,则有

P(A)==

(9)几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本**可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一**A,

。其中L为几何度量(长度、面积、体积)。

(10)加法公式 P(A+B)=P(A)+P(B)-P(AB)

当P(AB)=0时,P(A+B)=P(A)+P(B)

(11)减法公式 P(A-B)=P(A)-P(AB)

当B A时,P(A-B)=P(A)-P(B)

当A=Ω时,P()=1- P(B)

(12)条件概率定义设A、B是两个**,且P(A)>0,则称为**A发生条件下,**B发生的条件概率,记为。

条件概率是概率的一种,所有概率的性质都适合于条件概率。

例如P(Ω/B)=1 P(/A)=1-P(B/A)

(13)乘法公式乘法公式:

更一般地,对**A1,A2,…An,若P(A1A2…An-1)>0,则有

…………。

(14)独立性①两个**的独立性

设**、满足,则称**、是相互独立的。

若**、相互独立,且,则有

若**、相互独立,则可得到与、与、与也都相互独立。

必然**和不可能**Ø与任何**都相互独立。

Ø与任何**都互斥。

②多个**的独立性

设ABC是三个**,如果满足两两独立的条件,

P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)

并且同时满足P(ABC)=P(A)P(B)P(C)

那么A、B、C相互独立。

对于n个**类似。

(15)全概公式设**满足

1°两两互不相容,,

2°,

则有

(16)贝叶斯公式设**,,…,及满足

1°,,…,两两互不相容,>0, 1,2,…,,

2°,,

,i=1,2,…n。

此公式即为贝叶斯公式。

,(,,…,),通常叫先验概率。,(,,…,),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。

(17)伯努利概型我们作了次试验,且满足

u每次试验只有两种可能结果,发生或不发生;

u次试验是重复进行的,即发生的概率每次均一样;

u每次试验是独立的,即每次试验发生与否与其他次试验发生与否是互不影响的。

这种试验称为伯努利概型,或称为重伯努利试验。

用表示每次试验发生的概率,则发生的概率为,用表示重伯努利试验中出现次的概率,

,。

第二章随机变量及其分布

(1)离散型随机变量的分布律设离散型随机变量的可能取值为Xk(k=1,2,…)且取各个值的概率,即**(X=Xk)的概率为

P(X=xk)=pk,k=1,2,…,

则称上式为离散型随机变量的概率分布或分布律。有时也用分布列的形式给出:

显然分布律应满足下列条件:

(1),,(2)。

(2)连续型随机变量的分布密度设是随机变量的分布函数,若存在非负函数,对任意实数,有

则称为连续型随机变量。称为的概率密度函数或密度函数,简称概率密度。

密度函数具有下面4个性质:

1°。

2°。

(3)离散与连续型随机变量的关系

积分元在连续型随机变量理论中所起的作用与在离散型随机变量理论中所起的作用相类似。

(4)分布函数设为随机变量,是任意实数,则函数

称为随机变量X的分布函数,本质上是一个累积函数。

可以得到X落入区间的概率。分布函数表示随机变量落入区间(–∞,x]内的概率。

分布函数具有如下性质:

1°;

2°是单调不减的函数,即时,有;

3°,;

4°,即是右连续的;

5°。

对于离散型随机变量,;

对于连续型随机变量,。

(5)八大分布 0-1分布 P(X=1)=p, P(X=0)=q

二项分布在重贝努里试验中,设**发生的概率为。**发生的次数是随机变量,设为,则可能取值为。

,其中,

则称随机变量服从参数为,的二项分布。记为。

当时,,,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。

泊松分布设随机变量的分布律为

,,,

则称随机变量服从参数为的泊松分布,记为或者P()。

泊松分布为二项分布的极限分布(np=λ,n→∞)。

超几何分布

随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。

几何分布,其中p≥0,q=1-p。

随机变量X服从参数为p的几何分布,记为G(p)。

均匀分布设随机变量的值只落在[a,b]内,其密度函数在[a,b]上为常数,即

a≤x≤b

其他,

则称随机变量在[a,b]上服从均匀分布,记为X~U(a,b)。

分布函数为

a≤x≤b

0, x<a,

1, x>b。

当a≤x1<x2≤b时,X落在区间()内的概率为

指数分布,

0,,

其中,则称随机变量X服从参数为的指数分布。

X的分布函数为

,

x<0。

记住积分公式:

正态分布设随机变量的密度函数为

,,

其中、为常数,则称随机变量服从参数为、的正态分布或高斯(Gauss)分布,记为。

具有如下性质:

1°的图形是关于对称的;

2°当时,为大值;

若,则的分布函数为

。。

参数、时的正态分布称为标准正态分布,记为,其密度函数记为

,,

分布函数为

是不可求积函数,其函数值,已编制成表可供查用。

Φ(-x)=1-Φ(x)且Φ(0)=。

如果~,则~。

(6)分位数下分位表:;

上分位表:。

(7)函数分布离散型已知的分布列为

的分布列(互不相等)如下:

若有某些相等,则应将对应的相加作为的概率。

连续型先利用X的概率密度fX(x)写出Y的分布函数FY(y)=P(g(X)≤y),再利用变上下限积分的求导公式求出fY(y)。

第三章二维随机变量及其分布

(1)联合分布离散型如果二维随机向量(X,Y)的所有可能取值为至多可列个有序对(x,y),则称为离散型随机量。

设=(X,Y)的所有可能取值为,且**{=}的概率为pij,,称

为=(X,Y)的分布律或称为X和Y的联合分布律。联合分布有时也用下面的概率分布表来表示:

Y

X y1 y2… yj…

x1 p11 p12… p1j…

x2 p21 p22… p2j…

xi pi1……

这里pij具有下面两个性质:

(1)pij≥0(i,j=1,2,…);

(2)

连续型对于二维随机向量,如果存在非负函数,使对任意一个其邻边分别平行于坐标轴的矩形区域D,即D={(X,Y)|a<x<b,c<y<d}有

则称为连续型随机向量;并称f(x,y)为=(X,Y)的分布密度或称为X和Y的联合分布密度。

分布密度f(x,y)具有下面两个性质:

(1) f(x,y)≥0;

(2)

(2)二维随机变量的本质

(3)联合分布函数设(X,Y)为二维随机变量,对于任意实数x,y,二元函数

称为二维随机向量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数。

分布函数是一个以全平面为其定义域,以**的概率为函数值的一个实值函数。分布函数F(x,y)具有以下的基本性质:

(1)

(2)F(x,y)分别对x和y是非减的,即

当x2>x1时,有F(x2,y)≥F(x1,y);当y2>y1时,有F(x,y2)≥F(x,y1);

(3)F(x,y)分别对x和y是右连续的,即

(4)

(5)对于

.

(4)离散型与连续型的关系

(5)边缘分布离散型 X的边缘分布为

Y的边缘分布为

连续型 X的边缘分布密度为

Y的边缘分布密度为

(6)条件分布离散型在已知X=xi的条件下,Y取值的条件分布为

在已知Y=yj的条件下,X取值的条件分布为

连续型在已知Y=y的条件下,X的条件分布密度为

在已知X=x的条件下,Y的条件分布密度为

(7)独立性一般型 F(X,Y)=FX(x)FY(y)

离散型

有零不独立

连续型 f(x,y)=fX(x)fY(y)

直接判断,充要条件:

①可分离变量

②正概率密度区间为矩形

二维正态分布

=0

随机变量的函数若X1,X2,…Xm,Xm+1,…Xn相互独立, h,g为连续函数,则:

h(X1,X2,…Xm)和g(Xm+1,…Xn)相互独立。

特例:若X与Y独立,则:h(X)和g(Y)独立。

例如:若X与Y独立,则:3X+1和5Y-2独立。

(8)二维均匀分布设随机向量(X,Y)的分布密度函数为

其中SD为区域D的面积,则称(X,Y)服从D上的均匀分布,记为(X,Y)~U(D)。

例如图3.1、图3.2和图3.3。

y

1

D1

O 1 x

图3.1

y

D2

1

1

O 2 x

图3.2

y

D3

d

c

O a b x

图3.3

(9)二维正态分布设随机向量(X,Y)的分布密度函数为

其中是5个参数,则称(X,Y)服从二维正态分布,

记为(X,Y)~N(

由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,

即X~N(

但是若X~N(,(X,Y)未必是二维正态分布。

(10)函数分布 Z=X+Y根据定义计算:

对于连续型,fZ(z)=

两个独立的正态分布的和仍为正态分布()。

n个相互独立的正态分布的线性组合,仍服从正态分布。

Z=max,min(X1,X2,…Xn)若相互独立,其分布函数分别为,则Z=max,min(X1,X2,…Xn)的分布函数为:

分布设n个随机变量相互独立,且服从标准正态分布,可以证明它们的平方和

的分布密度为

我们称随机变量W服从自由度为n的分布,记为W~,其中

所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的一个重要参数。

分布满足可加性:设

t分布设X,Y是两个相互独立的随机变量,且

可以证明函数

的概率密度为

我们称随机变量T服从自由度为n的t分布,记为T~t(n)。

F分布设,且X与Y独立,可以证明的概率密度函数为

我们称随机变量F服从第一个自由度为n1,第二个自由度为n2的F分布,记为F~f(n1, n2).

第四章随机变量的数字特征

(1)一维随机变量的数字特征离散型连续型

期望

期望就是平均值设X是离散型随机变量,其分布律为P()=pk,k=1,2,…,n,

(要求绝对收敛)设X是连续型随机变量,其概率密度为f(x),

(要求绝对收敛)

函数的期望 Y=g(X)

Y=g(X)

方差

D(X)=E[X-E(X)]2,

标准差

矩①对于正整数k,称随机变量X的k次幂的数学期望为X的k阶原点矩,记为vk,即

νk=E(Xk)=, k=1,2,….

②对于正整数k,称随机变量X与E(X)差的k次幂的数学期望为X的k阶中心矩,记为,即

=, k=1,2,….①对于正整数k,称随机变量X的k次幂的数学期望为X的k阶原点矩,记为vk,即

νk=E(Xk)=

k=1,2,….

②对于正整数k,称随机变量X与E(X)差的k次幂的数学期望为X的k阶中心矩,记为,即

=

k=1,2,….

切比雪夫不等式设随机变量X具有数学期望E(X)=μ,方差D(X)=σ2,则对于任意正数ε,有下列切比雪夫不等式

切比雪夫不等式给出了在未知X的分布的情况下,对概率

的一种估计,它在理论上有重要意义。

(2)期望的性质(1) E(C)=C

(2) E(CX)=CE(X)

(3) E(X+Y)=E(X)+E(Y),

(4) E(XY)=E(X) E(Y),充分条件:X和Y独立;

充要条件:X和Y不相关。

(3)方差的性质(1) D(C)=0;E(C)=C

(2) D(aX)=a2D(X); E(aX)=aE(X)

(3) D(aX+b)= a2D(X); E(aX+b)=aE(X)+b

(4) D(X)=E(X2)-E2(X)

(5) D(X±Y)=D(X)+D(Y),充分条件:X和Y独立;

充要条件:X和Y不相关。

D(X±Y)=D(X)+D(Y)±2E[(X-E(X))(Y-E(Y))],无条件成立。

而E(X+Y)=E(X)+E(Y),无条件成立。

(4)常见分布的期望和方差期望方差

0-1分布 p

二项分布 np

泊松分布

几何分布

超几何分布

均匀分布

指数分布

正态分布

n 2n

t分布 0(n>2)

(5)二维随机变量的数字特征期望

函数的期望=

方差

协方差对于随机变量X与Y,称它们的二阶混合中心矩为X与Y的协方差或相关矩,记为,即

与记号相对应,X与Y的方差D(X)与D(Y)也可分别记为与。

相关系数对于随机变量X与Y,如果D(X)>0, D(Y)>0,则称

为X与Y的相关系数,记作(有时可简记为)。

||≤1,当||=1时,称X与Y完全相关:

完全相关

而当时,称X与Y不相关。

以下五个命题是等价的:

①;

②cov(X,Y)=0;

③E(XY)=E(X)E(Y);

④D(X+Y)=D(X)+D(Y);

⑤D(X-Y)=D(X)+D(Y).

协方差矩阵

混合矩对于随机变量X与Y,如果有存在,则称之为X与Y的k+l阶混合原点矩,记为;k+l阶混合中心矩记为:

(6)协方差的性质(i) cov(X, Y)=cov(Y, X);

(ii) cov(aX,bY)=ab cov(X,Y);

(iii) cov(X1+X2, Y)=cov(X1,Y)+cov(X2,Y);

(iv) cov(X,Y)=E(XY)-E(X)E(Y).

(7)独立和不相关(i)若随机变量X与Y相互独立,则;反之不真。

(ii)若(X,Y)~N(),

则X与Y相互独立的充要条件是X和Y不相关。

第五章大数定律和中心极限定理

(1)大数定律

切比雪夫大数定律设随机变量X1,X2,…相互独立,均具有有限方差,且被同一常数C所界:D(Xi)<C(i=1,2,…),则对于任意的正数ε,有

特殊情形:若X1,X2,…具有相同的数学期望E(XI)=μ,则上式成为

伯努利大数定律设μ是n次独立试验中**A发生的次数,p是**A在每次试验中发生的概率,则对于任意的正数ε,有

伯努利大数定律说明,当试验次数n很大时,**A发生的频率与概率有较大判别的可能性很小,即

这就以严格的数学形式描述了频率的稳定性。

辛钦大数定律设X1,X2,…,Xn,…是相互独立同分布的随机变量序列,且E(Xn)=μ,则对于任意的正数ε有

(2)中心极限定理

列维-林德伯格定理设随机变量X1,X2,…相互独立,服从同一分布,且具有相同的数学期望和方差:,则随机变量

的分布函数Fn(x)对任意的实数x,有

此定理也称为独立同分布的中心极限定理。

棣莫弗-拉普拉斯定理设随机变量为具有参数n, p(0<p<1)的二项分布,则对于任意实数x,有

(3)二项定理若当,则

超几何分布的极限分布为二项分布。

(4)泊松定理若当,则

其中k=0,1,2,…,n,…。

二项分布的极限分布为泊松分布。

第六章样本及抽样分布

(1)数理统计的基本概念总体在数理统计中,常把被考察对象的某一个(或多个)指标的全体称为总体(或母体)。我们总是把总体看成一个具有分布的随机变量(或随机向量)。

个体总体中的每一个单元称为样品(或个体)。

样本我们把从总体中抽取的部分样品称为样本。样本中所含的样品数称为样本容量,一般用n表示。在一般情况下,总是把样本看成是n个相互独立的且与总体有相同分布的随机变量,这样的样本称为简单随机样本。在泛指任一次抽取的结果时,表示n个随机变量(样本);在具体的一次抽取之后,表示n个具体的数值(样本值)。我们称之为样本的两重性。

样本函数和统计量设为总体的一个样本,称

()

为样本函数,其中为一个连续函数。如果中不包含任何未知参数,则称()为一个统计量。

常见统计量及其性质样本均值

样本方差

样本标准差

样本k阶原点矩

样本k阶中心矩

,,

,,

其中,为二阶中心矩。

(2)正态总体下的四大分布正态分布设为来自正态总体的一个样本,则样本函数

t分布设为来自正态总体的一个样本,则样本函数

其中t(n-1)表示自由度为n-1的t分布。

设为来自正态总体的一个样本,则样本函数

其中表示自由度为n-1的分布。

F分布设为来自正态总体的一个样本,而为来自正态总体的一个样本,则样本函数

其中

表示第一自由度为,第二自由度为的F分布。

(3)正态总体下分布的性质与独立。

第七章参数估计

(1)点估计矩估计设总体X的分布中包含有未知数,则其分布函数可以表成它的k阶原点矩中也包含了未知参数,即。又设为总体X的n个样本值,其样本的k阶原点矩为

这样,我们按照“当参数等于其估计量时,总体矩等于相应的样本矩”的原则建立方程,即有

由上面的m个方程中,解出的m个未知参数即为参数()的矩估计量。

若为的矩估计,为连续函数,则为的矩估计。

极大似然估计当总体X为连续型随机变量时,设其分布密度为,其中为未知参数。又设为总体的一个样本,称

为样本的似然函数,简记为Ln.

当总体X为离型随机变量时,设其分布律为,则称

为样本的似然函数。

若似然函数在处取到大值,则称分别为的大似然估计值,相应的统计量称为大似然估计量。

若为的极大似然估计,为单调函数,则为的极大似然估计。

(2)估计量的评选标准无偏性设为未知参数的估计量。若E()=,则称为的无偏估计量。

E()=E(X), E(S2)=D(X)

有效性设和是未知参数的两个无偏估计量。若,则称有效。

一致性设是的一串估计量,如果对于任意的正数,都有

则称为的一致估计量(或相合估计量)。

若为的无偏估计,且则为的一致估计。

只要总体的E(X)和D(X)存在,一切样本矩和样本矩的连续函数都是相应总体的一致估计量。

(3)区间估计置信区间和置信度设总体X含有一个待估的未知参数。如果我们从样本出发,找出两个统计量与,使得区间以的概率包含这个待估参数,即

那么称区间为的置信区间,为该区间的置信度(或置信水平)。

单正态总体的期望和方差的区间估计

设为总体的一个样本,在置信度为下,我们来确定的置信区间。具体步骤如下:

(i)选择样本函数;

(ii)由置信度,查表找分位数;

(iii)导出置信区间。

已知方差,估计均值(i)选择样本函数

(ii)查表找分位数

(iii)导出置信区间

未知方差,估计均值(i)选择样本函数

(ii)查表找分位数

(iii)导出置信区间

方差的区间估计(i)选择样本函数

(ii)查表找分位数

(iii)导出的置信区间

第八章假设检验

基本思想假设检验的统计思想是,概率很小的**在一次试验中可以认为基本上是不会发生的,即小概率原理。

为了检验一个假设H0是否成立。我们先假定H0是成立的。如果根据这个假定导致了一个不合理的**发生,那就表明原来的假定H0是不正确的,我们拒绝接受H0;如果由此没有导出不合理的现象,则不能拒绝接受H0,我们称H0是相容的。与H0相对的假设称为备择假设,用H1表示。

这里所说的小概率**就是**,其概率就是检验水平α,通常我们取α=0.05,有时也取0.01或0.10。

基本步骤假设检验的基本步骤如下:

(i)提出零假设H0;

(ii)选择统计量K;

(iii)对于检验水平α查表找分位数λ;

(iv)由样本值计算统计量之值K;

将进行比较,作出判断:当时否定H0,否则认为H0相容。

两类错误

第一类错误当H0为真时,而样本值却落入了否定域,按照我们规定的检验法则,应当否定H0。这时,我们把客观上H0成立判为H0为不成立(即否定了真实的假设),称这种错误为“以真当假”的错误或第一类错误,记为犯此类错误的概率,即

P{否定H0|H0为真}=;

此处的α恰好为检验水平。

第二类错误当H1为真时,而样本值却落入了相容域,按照我们规定的检验法则,应当接受H0。这时,我们把客观上H0。不成立判为H0成立(即接受了不真实的假设),称这种错误为“以假当真”的错误或第二类错误,记为犯此类错误的概率,即

P{接受H0|H1为真}=。

两类错误的关系人们当然希望犯两类错误的概率同时都很小。但是,当容量n一定时,变小,则变大;相反地,变小,则变大。取定要想使变小,则必须增加样本容量。

在实际使用时,通常人们只能控制犯第一类错误的概率,即给定显著性水平α。α大小的选取应根据实际情况而定。当我们宁可“以假为真”、而不愿“以真当假”时,则应把α取得很小,如0.01,甚至0.001。反之,则应把α取得大些。

二、求关于正弦函数级数的极限***谢谢***步骤详细再追加分数

2008年数学三考试大纲

数学三

考试科目微积分、线性代数、概率论与数理统计

微积分

一、函数、极限、连续

考试内容

函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、隐函数、反函数、分段函数和隐函数基本初等函数的性质及图形初等函数函数关系的建立

数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小和无穷大的概念及关系无穷小的性质及无穷小的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:

,

函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质

考试要求

1.理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系.

2.了解函数的有界性、单调性、周期性和奇偶性.

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.

4.掌握基本初等函数的性质及其图形,理解初等函数的概念.

5.了解数列极限和函数极限(包括左、右极限)的概念.

6.理解无穷小的概念和基本性质,掌握无穷小的比较方法.了解无穷大的概念及其与无穷小的关系.

7.了解极限的性质与极限存在的两个准则,掌握极限四则运[wiki]算法[/wiki]则,会应用两个重要极限.

8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、大值与小值定理、介值定理),并会应用这些性质.

二、一元函数微分学

考试内容

导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的大值与小值

考试要求

1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线[wiki]方程[/wiki]和法线方程.

2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导法.

3.了解高阶导数的概念,会求简单函数的高阶导数.

4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.

5.理解罗尔(Rol1e)定理、拉格朗日(Lagrange)中值定理、了解泰勒(Taylor)定理、了解柯西(Cauchy)中值定理,掌握这四个定理的简单应用.

6.会用洛必达法则求极限.

7.掌握函数单调性的判别方法,了解函数极值的概念掌握函数极值、大值和小值的求法及其应用.

8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数,当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.

9.会描绘简单函数的图形.

三、一元函数积分学

考试内容

原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法和分部积分法反常(广义)积分积分的应用

考试要求

1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式;掌握不定积分的换元积分法与分部积分法.

2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.

3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用题.

4.了解反常积分的概念,会计算反常积分.

四、多元函数微积分学

考试内容

多元函数的概念二元函数的几何意义二元函数的极限与连续性的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、大值和小值二重积分的概念、基本性质和计算**区域上简单的广义二重积分

考试要求

1.了解多元函数的概念,了解二元函数的几何意义.

2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.

3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会用多元隐函数的偏导数.

4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的大值和小值,并会解决某些简单的应用问题.

5.了解二重积分的概念与基本性质,掌握二重积分的计算方法([wiki]直角[/wiki]坐标、极坐标),了解**区域上较简单的广义二重积分并会计算.

五、无穷级数

考试内容

常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性正项级数收敛性的判别任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区问(指开区间)和收敛域幂级数的和函数幂级数在收敛区间内的基本性质简单幂级数的和函数的求法

初等函数的幂级数展开式

考试要求

1.了解级数的收敛与发散、收敛级数的和的概念.

2.掌握级数的基本性质及级数收敛的必要条件,掌握几何级数及p级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.

3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,掌握交错级数的莱布尼茨判别法.

4.会求幂级数的收敛半径、收敛区间及收敛域.

5.了解幂级数在收敛区间内的基本性质(和函数的连续性、逐项微分和逐项积分),会求简单幂级数在其收敛区间内的和函数,并会由此求出某些数项级数的和.

6"掌握、、、及的麦克劳林(Maclaurin)展开式,会用它们将简单函数间接展开成幂级数.

六、常微分方程与差分方程

考试内容

微分方程的概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程与差分方程的简单应用

考试要求

1.了解微分方程及其阶、解、通解、初始条件和特解等概念.

2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法.

3.会解二阶常系数齐次线性微分方程.

4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与乘积的二阶常系数非齐次线性微分方程.

5.了解差分与差分方程及其通解与特解等概念.

6.掌握一阶常系数线性差分方程的求解方法.

7.会用微分方程和差分方程求解简单的经济应用问题.

Back

线性代数

一、行列式

考试内容

行列式的概念和基本性质行列式按行(列)展开定理

考试要求

1.理解行列式的概念,掌握行列式的性质.

2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

二、矩阵

考试内容

矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式

矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算

考试要求

1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义和性质,理解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.

2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵的乘积的行列式的性质.

3.理解逆矩阵的概念、掌握逆矩阵的性以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.

4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.

5.了解分块矩阵的概念,掌握分块矩阵的运算法则.

三、向量

考试内容

向量的概念向量的线性组合与线性表示向量组线性相关与线性元关向量组的极大线性元关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系

向量的内积线性无关向量组的正交规范化方法

考试要求

1.了解向量的概念,掌握向量的加法和数乘运算法则.

2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.

3.理解向量组的极大无关组的概念,会求向量组的极大无关组及秩.

4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.

5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法

四、线性方程组

考试内容

线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解

考试要求

1.会用克莱姆法则解线性方程组.

2.掌握非齐次线性方程组有解和无解的判定方法.

3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.

4.理解非齐次线性方程组的结构及通解的概念.

5.掌握用初等行变换求解线性方程组的方法.

五、矩阵的特征值和特征向量

考试内容

矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵

考试要求

1.理解矩阵的特征值、特征向量等概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.

2.理解矩阵相似的概念、掌握相似矩阵的性质,了解矩阵可对角化的充分条件和必要条件,掌握将矩阵化为相似对角矩阵的方法.

3.掌握实对称矩阵的特征值和特征向量的性质.

六、二次型

考试内容

二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形正交变换和配方法化二次型为标准形二次型及其矩阵的正定性

考试要求

1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念.

2.理解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会甩正交变换和配方法化二次型为标准形.

3.理解正定二次型、正定矩阵的概念,并掌握其判别法.

Back

概率论与数理统计

一、随机**和概率

考试内容

随机**与样本空间**的关系与运算完备**组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式**的独立性

独立重复**

考试要求

1.了解样本空间(基本**空间)的概念,理解随机**的概念,掌握**间的关系及运算.

2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法、乘法公式、全概率公式及贝叶斯(Bayes)公式等.

3.理解**的独立性的概念,掌握用**独立性进行概率计算;理解独立重复试验的概念,掌握计算有关**概率的方法.

二、随机变量及其分布

考试内容

随机变量随机变量的分布函数及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布

考试要求

1.理解随机变量的概念;理解分布函数

的概念及性质;会计算与随机变量有关的**的概率.

2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.

3.理解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.

4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的密度函数为

5.会求随机变量函数的分布.

三、多维随机变量的分布

考试内容

多维随机变量及其分布函数二维离散型随机变量概率分布、边缘分布和条件分布、二维连续型随机变量的概率密度边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布

考试要求

1.理解多维随机变量的分布的概念和基本性质.

2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度.掌握二维随机变量的边缘概率分布和条件分布.

3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件;理解随机变量的不相关性与独立性的关系.

4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.

5.会根据两个随机变量的联合分布求其函数的分布;会根据多个相互独立随机变量的联合分布求其函数的分布.

四、随机变量的数字特征

考试内容

随机变量的[wiki]数学[/wiki]期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质

考试要求

1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.

2.会随机变量函数的数学期望.

3.掌握切比雪夫不等式.

五、大数定律和中心极限定理

考试内容

切比雪夫(Chebyhev)大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(De Moivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理

考试要求

1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).

2.了解棣莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机**的概率.

六、数理统计的基本概念

考试内容

总体个体简单随机样本统计量经验分布函数样本均值样本方方差和样本矩分布分布分布分位数正态总体的常用抽样分布

考试要求

1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:

.

2.了解产生变量、变量和变量的典型模型;理解标准正态分布、分布、分布和分布的分位数,会查相应的数值表.

3.掌握正态总体的抽样分布:样本均值、样本方差、样本矩、样本均值差、样本方差比的抽样分布.

4.理解经验分布函数的概念和性质,会根据样本值求经验分布函数.

七、参数估计

考试内容

点估计的概念估计量与估计值矩估计法大似然估计法估计量的评选标准区间估计的概念单个正态总体均值的区间估计单个正态总体方差和标准差的区间估计两个正态总体的均值差和方差比的区间估计

考试要求

1.理解参数的点估计、估计量与估计值的概念;了解估计量的无偏性、有效性(小方差性)和一致性(相合性)的概念,并会验正估计量的无偏性.

2.掌握矩估计法(一阶、二阶矩)和大似然估计法

3.掌握建立未知参数的(双侧和单侧)置信区间的一般方法;掌握正态总体均值、方差、标准差、矩以及与其相联系的数值特征的置信区间的求法.

4.掌握两个正态总体的均值差和方差比及相关数字特征的置信区间的求法.

八、假设检验

考试内容

显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验

考试要求

1.理解“假设”的概念和基本类型;理解显著性检验的基本思想,掌握假设检验的基本步骤;会构造简单假设的显著性检验.

2.理解假设检验可能产生的两类错误,对于较简单的情形,会计算两类错误的概率.

3.掌握单个及两个正态总体的均值和方差的假设检验.

试卷结构

(-)总分试卷满分为150分

(二)内容比例微积分约56%线性代数约22%概率论与数理统计约22%

(三)题型比例填空题与选择题约37%解答题(包括证明题)约63%

注:考试时间为 180分钟

三、函数的大值和小值怎么算

1、利用函数的单调性,首先明确函数的定义域和单调性,再求值。

2、如果函数在闭合间隔上是连续的,则通过值定理存在全局大值和小值。此外,全局大值(或小值)必须是域内部的局部大值(或小值),或者必须位于域的边界上。

因此,找到全局大值(或小值)的方法是查看内部的所有局部大值(或小值),并且还查看边界上的点的大值(或小值),并且取大值或小)一个。

3、费马定理可以发现局部极值的微分函数,表明它们必须发生在临界点。可以通过使用一阶导数测试,二阶导数测试或高阶导数测试来区分临界点是局部大值还是局部小值,给出足够的可区分性。

4、对于分段定义的任何功能,通过分别查找每个零件的大值(或小值),然后查看哪一个是大(或小),找到大值(或小值)。

扩展资料:

求大值小值的例子:

(1)函数x^2在x= 0时具有唯一的全局小值。

(2)函数x^3没有全局小值或大值。虽然x= 0时的一阶导数3x^2为0,但这是一个拐点。

(3)函数x^-x在x= 1/ e处的正实数具有唯一的全局大值。

(4)函数x^3/3-x具有一阶导数x^2-1和二阶导数2x,将一阶导数设置为0并求解x给出在-1和+1的平稳点。从二阶导数的符号,我们可以看到-1是局部大值,+1是局部小值。请注意,此函数没有全局大值或小值。

相关文章

海信电视65E8G65英寸4K使用心得反馈

海信电视65E8G65英寸4K使用心得反馈

很多小伙伴在关注海信电视65E8G65英寸4K怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品,一起来看看吧。...

康佳(KONKA)43S343英寸金属全面屏高清怎么样?质量测评好不好用?

康佳(KONKA)43S343英寸金属全面屏高清怎么样?质量测评好不好用?

很多小伙伴在关注康佳(KONKA)43S343英寸金属全面屏高清怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产...

小米智能摄像机3质量好不好

小米智能摄像机3质量好不好

很多小伙伴在关注小米智能摄像机3怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品,一起来看看吧。...

锐玛(EIRMAI)EMB-SD06单反包相机包双肩摄影包数码帆布防水旅行背包质量测评好不好

锐玛(EIRMAI)EMB-SD06单反包相机包双肩摄影包数码帆布防水旅行背包质量测评好不好

很多小伙伴在关注锐玛(EIRMAI)EMB-SD06单反包相机包双肩摄影包数码帆布防水旅行背包怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信...

小米米家使用感受如何

小米米家使用感受如何

很多小伙伴在关注小米米家怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品,一起来看看吧。...

科大讯飞AI学习机T20Pro使用心得反馈

科大讯飞AI学习机T20Pro使用心得反馈

很多小伙伴在关注科大讯飞AI学习机T20Pro怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品,一起来看看吧。...